GSLV-Mk III / Chandrayaan-2 Mission

0
117
fintechgie-chandrayaan
fintechgie-chandrayaan

Chandrayaan-2 lander deploying rover

Chandrayaan-2 lander deploying rover

Chandrayaan-2 is India’s planned second mission to the moon, which is expected to launch in 2019. It is a follow-up mission from the Chandrayaan-1 mission that assisted in confirming the presence of water/hydroxyl on the moon in 2009. Chandrayaan-2 will launch from the Sathish Dhawan Space Center in Sriharikota, India, aboard a Geosynchronous Satellite Launch Vehicle (GSLV) rocket.

chanrayaan-fintechgie

According to the Indian Space Research Organization (ISRO), the new mission will consist of an orbiter, a lander and a rover. The orbiter will perform mapping from an altitude of 100 kilometers (62 miles), while the lander will make a soft landing on the surface and send out the rover.

Development and science

Initially, ISRO planned to partner with Russia to perform Chandrayaan-2. The two agencies signed an agreement in 2007 to launch the orbiter and lander in 2013. Russia later pulled out of the agreement, however, according to a news report from The Hindu. The Russian lander’s construction was delayed after the December 2011 failure of Roscosmos’ Phobos-Grunt mission to the Martian moon of Phobos, the report stated.

chanrayaan-fintechgie

Russia subsequently pulled out of Chandrayaan-2 altogether, citing financial issues. Some reports stated that NASA and the European Space Agency were interested in participating, but ISRO proceeded with the mission on its own.

chanrayaan-fintechgie

The Chandrayaan-2 orbiter will circle the moon and provide information about its surface, ISRO stated. “The payloads will collect scientific information on lunar topography, mineralogy, elemental abundance, lunar exosphere and signatures of hydroxyl and water-ice,” ISRO said on its website. The mission will also send a small, 20-kilogram (44 lbs.), six-wheeled rover to the surface; the rover will move semi-autonomously, examining the lunar regolith’s composition.

chanrayaan-fintechgie

This is the list of instruments on the orbiter

  • Terrain Mapping Camera 2 (TMC-2), which will map the lunar surface in three dimensions using two on-board cameras. A predecessor instrument called TMC flew on Chandrayaan-1.
  • Collimated Large Array Soft X-ray Spectrometer (CLASS), which will map the abundance of minerals on the surface. A predecessor instrument called CIXS (sometimes written as C1XS) flew on Chandrayaan-1.
  • Solar X-ray Monitor (XSM), which looks at emissions of solar X-rays.
  • Chandra’s Atmospheric Composition Explorer (ChACE-2), which is a neutral mass spectrometer. A predecessor instrument called CHACE flew on Chandrayaan-1’s Moon Impact Probe.
  • Synthetic Aperture Radar (SAR), which will map the surface in radio waves. Some of its design is based on Chandrayaan-1’s MiniSAR.
  • Imaging Infra-Red Spectrometer (IIRS), which will measure the abundance of water/hydroxl on the surface.
  • Orbiter High Resolution Camera (OHRC) to examine the surface, particularly the landing site of the lander and rover.
chanrayaan-fintechgie

The lander’s instruments include:

  • Instrument for Lunar Seismic Activity (ILSA), to look for moonquakes.
  • Chandra’s Surface Thermophysical Experiment (ChaSTE), to examine the surface’s thermal properties.
  • Radio Anatomy of Moon Bound Hypersensitive ionosphere and Atmosphere (RAMBHA-Langmuir Probe), to look at plasma density on the surface.

The rover will carry two science instruments to look at the composition of the surface: the Laser-Induced Breakdown Spectroscope (LIBS) and the Alpha Particle X-Ray Spectrometer (APXS).

GSLV-Mk III / Chandrayaan-2 Mission

Chandrayaan-2 will be launched from Satish Dhawan Space Center at Sriharikota on-board GSLV Mk-III on 15th July 2019. It will be injected into an earth parking 170 x40400 km orbit. A series of maneuvers will be carried out to raise its orbit and put Chandrayaan-2 on Lunar Transfer Trajectory. On entering Moon’s sphere of influence, on-board thrusters will slow down the spacecraft for Lunar Capture.

The Orbit of Chandrayaan-2 around the moon will be circularized to 100×100 km orbit through a series of orbital maneuvers. On the day of landing, the lander will separate from the Orbiter and then perform a series of complex maneuvers comprising of rough braking and fine braking. Imaging of the landing site region prior to landing will be done for finding safe and hazard-free zones.

The lander-Vikram will finally land near South Pole of the moon on 6th September 2019. Subsequently, Rover will roll out and carry out experiments on Lunar surface for a period of 1 Lunar day which is equal to 14 Earth days. Orbiter will continue its mission for a duration of one year.

LEAVE A REPLY

Please enter your comment!
Please enter your name here